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Abstract:
Over the past decade, Web Services have played a prominent role on the World 
Wide Web and in the business world. Our interest is focused on developing the 
toolkits for automatic web service and graphical user interface (GUI) generation. In 
previous work [1], we demonstrated how to translate one or more input scripts into 
a functional web service, independent of the scripting language. We extend this 
work by considering the automatic creation of graphical user interfaces to allow 
interaction between an end user and the web service generated by KSG (KWATT 
Service Generator). KGG (KWATT GUI Generator) was developed to achieve this.
The KGG is a web service that runs inside the AXIS2 [2] server which is a Java 
based application, and it performs four major steps of GUI generation. First, the 
KGG receives the scripts from KGT (KWATT GUI Tools) after the corresponding 
web service is successfully generated. Comment lines inserted into the scripts 
provide hints to the XML generator about the interface widgets. Second, the 
structure of the GUI is encoded into an XML file by parsing those scripts with the 
XML generator. Third, the KGG extracts information from the generated XML file, 
then passes them to a plugin. Finally, the plugin generates the corresponding 
language user interface that is sent back to the user by the KGG.
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   FIGURE 1: KGT WORKFLOW

Both the KWATT Service Generator (KSG) and the KWATT GUI Generator (KGG) 
run as web services, and are accessed from command line. To simplify management 
and communication with these two generators, we developed an end-user 
application: KWATT GUI Tools (KGT). Figure 1 illustrates the workflow of the 
KGT. First, users select scripts that need processing, and set up information (such as 
host name and port name) of the web service and GUI generators via a graphical 
user interface. When the start button is checked, the KGT sends the selected scripts 
to the KWATT standalone web service generator, and waits for completion of the 
generation, then retrieves the corresponding information of the generated web 
service via a web method call. After the web service is successfully generated, the 
KGT combines the information from the web service and the source scripts, and 
forwards this data to the GUI generator. The KGT launches the GUI as it is received 
from the GUI generator.

Once the plugin receives a GUI model, it passes the model to the template filter, 
which retrieves GUI information from the model and replaces the corresponding 
information into the GUI template. The generated GUI code is stored in the directory 
specified by the core. The plugin returns the instance of the GUI File to inform the 
core that the GUI generation is completed. 
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Once the KGG service receives an uploaded script and with the name of one of the 
available plugins, it runs a system command "xmlGenerator" to generate an Xml file 
that encodes a detailed description of all the procedures, including parameter names 
and the various GUI elements associated with procedure parameters. It also includes 
the URL of the KWATT service WSDL descriptor. The XML file is then parsed by a 
XML parser and the parser returns a GUI Model. The generator also call a plugin 
finder to check if the requested plugin exists. If the plugin is found, the finder 
instantiates the plugin and returns the instance of the plugin. Next, the core of the 
generator passes the GUI model returned by the XML parser to the plugin, and the 
plugin sends back a generated GUI. finally, the generator core packs up the GUI 
source and returns it to the client. As we can easily see, the role of KGG core is like a 
commander, once receives an input file, it calls corresponding components inside the 
KGG to process it. Figure 2 presents the flow of data from the time the script leaves 
the client until the graphics user interface is returned the client. 
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FIGURE 2: KGG WORKFLOW

Note that the final action for the GUI generation is in a plugin,which creates the GUI 
code, and the rest of the actions are done in the KGG core. This structure makes   the 
extension and maintenance of the source code more flexible. Since the plugins in the 
KGG works independently, it is easier to add and remove one of them without 
affecting other plugins and  core applications. Figure 3 illustrates the workflow of a 
Java plugin.
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