
Toolkit for Automatic Service Generation: KWATT
 Yenan Qu & Gordon Erlebacher & Evan Bollig
 SC, Florida State University
 {yenanqu, erlebach, bollig}@scs.fsu.edu

Introduction to the SCS VisLab
-plus-

 A Layman’s Guide to Amira

Evan Bollig
bollig@scs.fsu.edu

 Julien Lafourcade, Magali Lapeyre-Mirande
 CS, UNIVERSITE DE PAU ET DES PAYS DE L’ADOUR
julien.lafourcade@gmail.com, magali.lapeyre-mirande@etud.univ-pau.fr

Abstract:
Over the past decade, Web Services have played a prominent role on the World
Wide Web and in the business world. Our interest is focused on developing the
toolkits for automatic web service and graphical user interface (GUI) generation. In
previous work [1], we demonstrated how to translate one or more input scripts into
a functional web service, independent of the scripting language. We extend this
work by considering the automatic creation of graphical user interfaces to allow
interaction between an end user and the web service generated by KSG (KWATT
Service Generator). KGG (KWATT GUI Generator) was developed to achieve this.
The KGG is a web service that runs inside the AXIS2 [2] server which is a Java
based application, and it performs four major steps of GUI generation. First, the
KGG receives the scripts from KGT (KWATT GUI Tools) after the corresponding
web service is successfully generated. Comment lines inserted into the scripts
provide hints to the XML generator about the interface widgets. Second, the
structure of the GUI is encoded into an XML file by parsing those scripts with the
XML generator. Third, the KGG extracts information from the generated XML file,
then passes them to a plugin. Finally, the plugin generates the corresponding
language user interface that is sent back to the user by the KGG.

References:
[1] KWATT: A Toolkit for Automatic Web Service Generation, Yenan Qu, Evan
Bollig, Gordon Erlebacher, Visual Geosciences, Vol. 13, No. 1. (1 July 2008), pp.
59-69
[2] Official web page: http://ws.apache.org/axis2/

send a script to
service generator

return cid and
 new service port No.

call web method to generate
a new web service

send a script to
GUI generator

return generated
GUI code

KGT launches
 the GUI

GUI interacts with
the web service

time

KGT Interface

Final GUI GUI Generator

Web Service
 Generator

Client Server

 FIGURE 1: KGT WORKFLOW

Both the KWATT Service Generator (KSG) and the KWATT GUI Generator (KGG)
run as web services, and are accessed from command line. To simplify management
and communication with these two generators, we developed an end-user
application: KWATT GUI Tools (KGT). Figure 1 illustrates the workflow of the
KGT. First, users select scripts that need processing, and set up information (such as
host name and port name) of the web service and GUI generators via a graphical
user interface. When the start button is checked, the KGT sends the selected scripts
to the KWATT standalone web service generator, and waits for completion of the
generation, then retrieves the corresponding information of the generated web
service via a web method call. After the web service is successfully generated, the
KGT combines the information from the web service and the source scripts, and
forwards this data to the GUI generator. The KGT launches the GUI as it is received
from the GUI generator.

Once the plugin receives a GUI model, it passes the model to the template filter,
which retrieves GUI information from the model and replaces the corresponding
information into the GUI template. The generated GUI code is stored in the directory
specified by the core. The plugin returns the instance of the GUI File to inform the
core that the GUI generation is completed.
Acknowledgement
The authors thank the National Science Foundation for their support through ITR
grant NSF-0426867.

Once the KGG service receives an uploaded script and with the name of one of the
available plugins, it runs a system command "xmlGenerator" to generate an Xml file
that encodes a detailed description of all the procedures, including parameter names
and the various GUI elements associated with procedure parameters. It also includes
the URL of the KWATT service WSDL descriptor. The XML file is then parsed by a
XML parser and the parser returns a GUI Model. The generator also call a plugin
finder to check if the requested plugin exists. If the plugin is found, the finder
instantiates the plugin and returns the instance of the plugin. Next, the core of the
generator passes the GUI model returned by the XML parser to the plugin, and the
plugin sends back a generated GUI. finally, the generator core packs up the GUI
source and returns it to the client. As we can easily see, the role of KGG core is like a
commander, once receives an input file, it calls corresponding components inside the
KGG to process it. Figure 2 presents the flow of data from the time the script leaves
the client until the graphics user interface is returned the client.

GUI
Generator

Client Plugin
Finder

GUIXml
Parser

IPlugin

 Script(s)
(Information)

parse Xml file

returnGUIModel

RequestPlugin(pluginName)

instantiate
 Plugin

pluginInstantiated

generateGUI (Model)

GUIGenerated

packageGeneratedFilesreturnGUI

Xml
Generator

 path to xml file

FIGURE 2: KGG WORKFLOW

Note that the final action for the GUI generation is in a plugin,which creates the GUI
code, and the rest of the actions are done in the KGG core. This structure makes the
extension and maintenance of the source code more flexible. Since the plugins in the
KGG works independently, it is easier to add and remove one of them without
affecting other plugins and core applications. Figure 3 illustrates the workflow of a
Java plugin.

Core Plugin

TemplateFilter

Template

GUICode

GUI Model
Create
Stub

GUI Model
retrieve GUI

info

GUI info
Merge

GUI info

generate

Ack.

Pack up

Compile

FIGURE 3: PLUGIN WORKFLOW

time

sendScripts

